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Abstract: The provision or restriction of select nutrients in an athlete’s diet can elicit a variety of changes
in fuel utilization, training adaptation, and performance outcomes. Furthermore, nutrient availability
can also influence athlete health, with one key system of interest being iron metabolism. The aim of
this review was to synthesize the current evidence examining the impact of dietary manipulations on
the iron regulatory response to exercise. Specifically, we assessed the impact of both acute and chronic
carbohydrate (CHO) restriction on iron metabolism, with relevance to contemporary sports nutrition
approaches, including models of periodized CHO availability and ketogenic low CHO high fat diets.
Additionally, we reviewed the current evidence linking poor iron status and altered hepcidin activity
with low energy availability in athletes. A cohesive understanding of these interactions guides
nutritional recommendations for athletes struggling to maintain healthy iron stores, and highlights
future directions and knowledge gaps specific to elite athletes.
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1. Introduction

Strategies that support athlete health and training availability are integral to the optimization of
training outcomes and competition preparation. Nutrition has been recognized as an important
contributor to these goals, with the provision of energy, macronutrients and micronutrients
underpinning both health and performance. Energy supply is a basic consideration in sports nutrition,
with athletes experiencing both deliberate and unintentional changes to the balance between intake
and expenditure as they manipulate body composition and training loads. Although energy balance
is the traditional metric by which such changes have been evaluated, the newer concept of energy
availability [1] has become a major topic in considerations of athlete health, training consistency and
competition performance. Energy availability (EA), calculated by removing the energy cost of an
athlete’s exercise program from their dietary energy intake, represents the energy that is remaining to
support the body’s normal physiological functioning (e.g., reproductive system, bone metabolism,
and endocrine function) [2]. Low energy availability (LEA), arising from reduction in an athlete’s
energy intake and/or an increase in exercise load, is associated with downregulation and impairment
of key physiological processes due to the lack of adequate energy support [3]. LEA underpins the
clinical sequalae associated with the syndromes known as the Female Athlete Triad [4] and Relative
Energy Deficiency in Sport (RED-S) [5,6]. While the former focused on disruption to the menstrual
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cycle and bone health in female athletes, these models now acknowledge that LEA is also an important
issue in male athletes [7].

Carbohydrate (CHO) availability has emerged as another key theme of interest, with this
term describing the balance between CHO requirements of the muscle and central nervous system
(and potentially other organs and body systems) around an exercise session relative to the endogenous
and/or endogenous CHO supply [8]. There is plentiful evidence that strategies which achieve high
CHO availability (i.e., to balance supply to the demand) are associated with enhancement of exercise
capacity and sports performance, particularly during prolonged endurance events requiring high
intensity efforts [9,10]. These outcomes have led to recommendations that when optimal performance
is desired, endurance athletes adopt strategies of daily CHO intake and/or high CHO availability
around key exercise sessions to meet the session fuel demands [8]. However, the application of
advanced analytical techniques to investigate exercise–nutrient interactions has shown strategies that
achieve low CHO availability (i.e., acute CHO restriction around an exercise session) can amplify
cellular adaptations within skeletal muscle during and after exercise [11]. If manipulation of CHO
availability could be integrated into the training cycle, matching availability to the demands and
goals of each session, a strategic blend of augmented adaptation workouts and targeted quality
sessions could lead to enhanced performance outcomes [8,12]. Meanwhile, an alternative approach
to metabolic preparation for endurance exercise is to chronically restrict dietary CHO, allowing the
muscle to achieve a 2–3 fold increase in fat oxidation, coupled with a simultaneous decrease in CHO
utilization, thus shifting its fuel reliance from finite CHO stores to the relatively unlimited body fat
reserves [13–15]. The overall favorability of these strategies should be considered in the context of
an athlete’s performance goals and their requirement for metabolic flexibility [8,16,17]. Furthermore,
they should be carefully integrated into the athlete’s periodized training program to meet specific
training goals and performance outcomes [8].

Although the main concerns around LEA have targeted reproductive and bone health, there is
now greater awareness of the potential for wider disruption to body systems [5,6]. In parallel,
there is growing interest in the effects of manipulating CHO availability beyond impacting metabolic
changes in the muscle or performance outcomes, to the downstream targets of inter-organ cross-talk.
Iron metabolism is emerging as a system that can be influenced by both factors. Poor iron status is
often associated with LEA [6], with recent study of 1000 female athletes reporting an odds ratio of
1.64 for a history of anemia, low hemoglobin or low iron stores in those identified with LEA [18].
In addition, there are mechanisms by which exercising under low CHO availability can impair iron
regulation [19,20]. Therefore, the purpose of this review is to synthesize the current information on the
impact of manipulating energy and CHO availability on iron metabolism, with consideration to current
dietary practices adopted by elite endurance athletes. This paper was prepared as a narrative review
in recognition of the complexity and the early stage of development of these themes. Our intention is
to draw on observations from our own extensive research on each of the separate topics, as well as the
work of others, to focus attention on issues that should be further addressed by a systematic series of
observational and intervention studies.

2. Why Are Adequate Iron Stores Necessary for Athletes?

Iron is fundamentally important to the optimal function of endurance athletes, given the mineral’s
role in athlete-relevant processes such as oxygen transport, cellular energy production, cognitive
processing, and immune function [21,22]. Compromised iron stores can impair critical physiological
processes, with significant negative effects on athlete health and performance. For example, high levels
of aerobic fitness, a common prerequisite for elite endurance performance, can be limited by
the oxygen-delivery capacity to the muscle [23]. In iron-compromised individuals with anemia,
the impairment of hemoglobin production results in decrements to aerobic performance [24]. However,
in such cases, once iron stores are restored via oral or intravenous supplementation, increases in
VO2max [25], exercise time-trial performance [26] and exercise efficiency [27,28] have been reported.
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Despite research and clinical knowledge, iron deficiency in athlete populations remains a common
issue. To understand the prevalence, various thresholds used to classify the severity of iron deficiency
must be established. Accordingly, three stages of iron deficiency have been proposed: (1) Iron depletion,
where iron stores are depleted without hematological consequences; (2) Iron deficiency non-anemia,
where erythropoiesis diminishes as the iron supply to the erythroid marrow is reduced; and (3) Iron
deficiency anemia, where hemoglobin production falls, resulting in anemia [29]. At a minimum,
quantification of serum ferritin, hemoglobin and transferrin concentrations are required to diagnose
an iron deficiency, with additional variables such as serum soluble transferrin receptor, hemoglobin
mass, or C-reactive protein presenting as potential beneficial adjunct markers of detection [20].
While there is general agreement that iron deficiency can negatively impact performance, there is
less conformity surrounding the classification criteria of these categories. Iron deficiency non-anemia
has been commonly defined in athletic populations as a serum ferritin of <20 µg·L−1 and transferrin
<16% [20,29]; however, variations in the literature range from serum ferritin values of <12 µg·L−1

through to <40 µg·L−1 [29–31]. Iron deficiency anemia is thought to be apparent once hemoglobin
concentrations become compromised, with diagnostic thresholds below 11.5–12 g·dL−1 commonly
used. The incidence of iron deficiency non-anemia is reported as 24–47% of female and 0–17% of male
athletes [32]; however, rates as high as 86% of female youth athletes from a mixed-sport cohort have
been reported [33]. The higher incidence of iron deficiency observed in females has been attributed
to the increased iron losses associated with menstruation [34]. However, the high prevalence of low
iron stores commonly seen in athletes can also be partially explained by incorporation of iron into
new tissues and cells induced by adaptation to training, as well as exercise-associated iron losses
via exercise-induced mechanisms such as hemolysis, hematuria, sweating, gastrointestinal bleeding,
and acute transient increases in the iron regulatory hormone, hepcidin [35].

3. Hepcidin and Iron Regulation

Iron status is tightly controlled in the body by the homeostatic regulation of iron movement
across the gut and between cells. Homeostasis is essential, not only to encourage iron uptake in
times of need, but also prevent iron toxicity and overload. Iron regulation is governed by the
master regulatory hormone, hepcidin, which is released from the liver to dictate the availability of
iron for biological functions [36]. The primary action of hepcidin is to bind to, and internalize the
body’s cellular iron export channels, ferroportin, located on the cell surface of macrophages of the
reticuloendothelial system, enterocytes in the duodenum and hepatocytes [37]. Hepcidin–ferroportin
interactions decrease both the amount of iron that can be absorbed from the diet by duodenal
enterocytes, and the amount of iron recycled by macrophages. Through this mechanism, hepcidin
is able to regulate transferrin and intracellular iron stores in a homeostatic manner. For instance,
in iron-deplete individuals, hepcidin concentrations are reduced as a means of encouraging iron
absorption to drive the replenishment of iron stores. However, iron excess stimulates liver hepcidin
production, in an attempt to prevent further increases in iron supply [38].

While iron status appears to be a dominant factor in hepcidin regulation, inflammation is
also known to impact hepcidin levels, and subsequently, iron balance [39]. The inflammatory
cytokine interleukin-6 (IL-6) directly stimulates hepcidin production via an increase in signal
transducer and activator of transcription 3 (STAT 3) production, resulting in increased transcription
of hepcidin from hepatocytes [40]. This mechanism was highlighted through administration of
30 µg·L−1 recombinant IL-6, which elicited a 7.5-fold increase in hepcidin concentrations 2 h
post-infusion [41]. This outcome was replicated in a study using a 2 ng·kg−1 body mass (BM) injection
of lipopolysaccharide (i.e., stimulating an inflammatory response), in which IL-6 was increased 3 h
post-injection, followed by an increase in hepcidin levels 3 h later (i.e., 6 h post-injection, but 3 h
post-IL-6 response) [42]. Since exercise is known to be a potent inflammatory stimulus, the relationship
between exercise, inflammation, and hepcidin activity has attracted attention. Indeed, IL-6 is released
from the skeletal muscle in response to exercise, playing a key role in mediating the acute phase
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response [43]. The duration of exercise appears to be the largest determinant of the post-exercise IL-6
response, with increases occurring in a time-dependent exponential manner, peaking immediately
post-exercise [44]. Furthermore, exercise intensity and modality can also influence the IL-6 response,
with higher intensity and weight-bearing modes (i.e., running vs. cycling) yielding greater increases
in post-exercise cytokine levels [43,45]. An early investigation of the link between exercise, IL-6 and
hepcidin tracked the time course of changes in these two variables following 60 min of treadmill
running (15 min at 75–80% HRpeak, followed by 45 min at 85–90% HRpeak) [46]. Here, a 6.9-fold
increase in IL-6 was evident immediately post-exercise, followed by a subsequent peak in hepcidin
levels 3–6 h later (5.2-fold increase). This was the first study to demonstrate that increases in hepcidin
levels occur subsequent to an exercise-induced inflammatory stimulus. This sequence is important,
as it is likely that iron absorption is impaired during the post-exercise period, when hepcidin levels are
elevated. This outcome could have negative implications for athletes’ iron balance, particularly when
performing frequent high-volume training. Within the exercise literature in particular, hepcidin levels
have been used as a surrogate marker of iron bioavailability, with interest in strategies that minimize
the hepcidin response to exercise.

Multiple regression analysis of both physiological and biochemical markers has shown that the
increase in IL-6 concentrations is a small, yet significant contributor to the magnitude of subsequent
hepcidin increase at 3 h post-exercise [47]. Interestingly, nutritional manipulation of the magnitude
of the IL-6 response to exercise may provide a mechanism to improve iron absorption during the
post-exercise period. Factors that influence the release of IL-6 during exercise include the task duration,
mode, intensity, training status, and of importance in the context of sports nutrition, muscle glycogen
stores [19,48]. Although an increased production of IL-6 has been demonstrated in response to running
or cycling for ≥2 h at moderate to high intensities, this response can be attenuated when CHO is
consumed throughout the exercise task to maintain blood glucose concentrations and decrease the
reliance on/depletion of muscle glycogen stores [19]. However, studies utilizing exercise bouts <2 h in
duration have shown CHO supplementation has minimal impact on IL-6 concentrations, unless exercise
is commenced with low muscle glycogen stores, in which case the response is augmented [19]. In this
low muscle glycogen scenario, CHO ingestion during exercise bouts of 30–90 min in duration can
promote the attenuation of the IL-6 response to exercise [49,50]. Given the relationship between IL-6
and hepcidin activity, an increased IL-6 response resulting from training with low CHO availability
and/or low muscle glycogen stores, may increase hepcidin levels 3 h post-exercise, which could then
negatively impact iron regulation in athlete cohorts. Therefore, strategies that promote CHO availability
may help to limit the post-exercise compromise in iron absorption by attenuating exercise-induced
inflammation and subsequently minimizing post-exercise hepcidin levels. However, the quantity and
timing of CHO intake are important factors in regulating this response.

4. Carbohydrate Availability and Iron Regulation

4.1. Post-Exercise Carbohydrate Intake

Post-exercise CHO consumption is an important nutritional strategy to optimize recovery,
particularly for endurance athletes. When an athlete’s goal is to maximize post-exercise muscle
glycogen restoration to support subsequent training/competition sessions, CHO ingestion should
occur as soon as practical after exercise, to take advantage of the higher rates of muscle glycogen
synthesis in the early phases of recovery, and maximize the duration of the period when exogenous
substrate is available for muscle storage [51]. CHO intake targets for rapid refueling during the
1–4 h following exercise have been set at 1.0–1.2 g·kg·h−1, consumed as small regular meals [52].
Several studies have investigated whether such practices also influence iron metabolism. Initial work
by Badenhorst et al. [53] examined the effect of consuming 12 mL·kg−1 body mass (BM) of a 10% CHO
beverage at different stages of recovery following a 60 min interval running task on post-exercise
inflammation and hepcidin levels. There were no differences in either IL-6 or hepcidin activity for
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up to 5 h post-exercise between immediate (15 and 120 min post-exercise) and delayed (120 and
240 min post-exercise) ingestion of CHO [53]. Since peak IL-6 concentrations occur immediately after
exercise and return rapidly to baseline within 1–2 h [54], it is likely that this finding reflects the inability
of CHO ingestion to affect hepcidin levels when IL-6 concentrations are already elevated. Indeed,
similar findings were reported by Dahlquist et al. [55], who investigated the IL-6 and hepcidin response
to different post-exercise nutrition support approaches following interval-based cycling sessions
(8 × 3 min intervals at 85% of power output at VO2max). This study found similar post-exercise IL-6 and
hepcidin responses to a recovery beverage containing 75 g CHO and 25 g of protein, the same beverage
with the addition of a vitamin D (5000 UI) and vitamin K2 (1000 mcg) complex, or a taste-matched
placebo. Therefore, it appears that the post-exercise consumption of CHO occurs too late to influence
post-exercise IL-6 or hepcidin levels, raising the prospect that CHO intake may need to occur prior
to, or during the exercise session, to be of benefit to this response. Of course, post-exercise CHO
consumption should still be emphasized for its other contributions to recovery, such as the restoration
of muscle glycogen stores, particularly following strenuous exercise [52].

4.2. Carbohydrate Feeding during Exercise

Given the lack of a substantial post-exercise effect from CHO consumption on inflammatory
responses and iron regulation, attention turns to the impact of consumption during exercise.
Robson-Ansley et al. [56] studied the ingestion of either a 8% CHO solution or a placebo beverage prior
to and during a 2 h submaximal run (60% vVO2max), at a rate of 2 mL·kg−1 BM consumed every 20 min.
Immediately following the 2 h run, a 5 km running time-trial was performed. Despite attenuation of
the IL-6 response immediately post-exercise when the CHO beverage was consumed, no differences in
hepcidin concentration were reported between conditions. Unfortunately, in this study, post-exercise
hepcidin concentrations were measured immediately after, and at 24 h of recovery; timings that would
likely not reflect the key periods during which hepcidin is elevated (i.e., 3–6 h post-exercise [46]). In a
follow-up study, participants ran for 90 min on a motorized treadmill at 75% VO2peak, while consuming
either a 6% CHO or placebo beverage at a rate of 3 mL·kg−1 BM every 20 min [57]. Despite using
more appropriate sampling time points (e.g., measuring hepcidin concentrations 3 h post-exercise),
no differences in either IL-6 or hepcidin levels were evident between the CHO or placebo beverage
trials. One explanation for the absence of an effect is that the selected exercise protocol was too short for
muscle glycogen stores to become sufficiently different in terms of eliciting increased IL-6 production.
Accordingly, scenarios which involve exercise in the presence of muscle glycogen depletion could elicit
a greater influence on iron regulation. On this basis, the manipulation of CHO in the hours prior to
exercise is of interest.

4.3. Implications of Acute Carbohydrate Restriction

Badenhorst et al. [50] assessed the impact of muscle glycogen stores on iron regulation by
implementing an exercise task known to deplete muscle glycogen stores by ~50% [58]. Here,
participants performed a 16 km run at 80% vVO2peak, followed by 5 × 1 min efforts at 130% vVO2peak

with 2 min recovery between efforts. This task was followed by 24 h of diets of either low (3 g kg−1 BM)
or high (10 g kg−1 BM) CHO intake with similar energy support (4100 and 4500 kcal, respectively) [50].
Participants then performed an interval-based running task (8 × 3 min at 85% vVO2peak) 24 h later,
with IL-6 and hepcidin concentrations measured pre/post-exercise and at 3 h post-exercise, respectively.
The results showed that the high CHO trial was associated with an attenuated post-exercise IL-6
response (2-fold vs. 3-fold increase) with a trend towards lower hepcidin levels 3 h post-exercise
compared to low CHO trial (4.1 vs. 6.4 nM; d = 0.72). While differences in the hepcidin response
did not reach statistical significance, this study demonstrated the potential for a moderately greater
increase in hepcidin following exercise undertaken with theoretical (albeit not quantified) depletion of
muscle glycogen stores. This study provides some evidence of an association between macronutrient
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intake, inflammation and iron regulation, especially when considered in the context of the athlete’s
pre-exercise nutritional state.

These outcomes become important in light of the contemporary interest in strategies to periodize
CHO availability around specific training sessions. It is likely that periodic glycogen depletion occurs
within the training programs of high performance endurance athletes, with the high frequency and
load (intensity and volume) of their sessions preventing a full glycogen restoration between each
workout. However, more recent practices that deliberately manipulate low CHO availability have
evolved as a strategy to enhance endurance training adaptations. For example, in a survey of the
self-reported practices of elite runners and race walkers, a majority (62%) of the distance athletes
reported training in a fasted state, typically 1–3 times/week around easier sessions [59], where low
liver glycogen stores and low exogenous CHO availability would be expected [8]. Although some
athletes identified “practical” reasons for this behavior (e.g., to allow them to get more sleep before
training or to reduce the risk of gut discomfort during training), the majority identified a strategic
rationale for the approach (e.g., to assist with body composition changes or enhance the training
response). Furthermore, 44% of the total cohort reported an occasional restriction of CHO intake
around or between some training sessions, theoretically creating a scenario of training with low muscle
glycogen availability, which would upregulate the accompanying cell signaling and gene expression
response [60]. Although many of the athletes who reported such practices identified that they were
underpinned by a strategic rationale, a significant number of the group who identified the absence
of CHO restriction strategies noted a lack of overall performance improvement, or an increase in
illness/injury, among their experiences [59]. Indeed, given the potential exacerbation of inflammation
and hepcidin activity following exercise with low muscle glycogen stores, the implications to iron
balance become an interesting point for consideration.

Recent work from our group investigated this question of dietary manipulation in an applied
setting, with elite triathletes performing four 48 h manipulations of diet and exercise [61]. Here, two trials
involved a ‘train-high, sleep-low, train-low’ sequence [8], which restricted CHO intake between the two
training sessions to achieve low glycogen training on the session of interest. The remaining two trials
involving exercise performed under consistently high CHO availability (8 g kg BM−1 day−1 CHO).
The final session of the sequence involved a 45 min running protocol, or a 60 min cycling protocol,
with the cycling trials of higher intensity (evidenced by increased heart rate and RER). During the
running trials, no differences in hepcidin concentrations were evident between conditions of high or
low CHO availability. However, during cycling trials, when exercise intensity was increased, a ~72%
greater hepcidin response was evident during the ‘train-high, sleep-low, train-low’ dietary condition.
Taken together, it appears that muscle glycogen availability and exercise intensity are both critical
factors in determining the magnitude of the post-exercise hepcidin response, and that alterations in
iron regulation may only occur once a critical level of metabolic stress is achieved. An important
practical outcome of this study was the demonstration that strategies of acute CHO periodization can
be implemented throughout the training cycle without altering iron regulation if applied to sessions of
short duration and low intensity. This outcome supports previous suggestions to maximize the efficacy
of targeted approaches [8], where low CHO availability should be periodized around lighter training
sessions to enhance the molecular adaptations to training, while high CHO availability can be used to
support training when quality and/or high intensity are required.

4.4. Implications of Long Term Carbohydrate Manipulation

Although it may be possible to integrate acute restriction of CHO into the training program
with minimal influence on post-exercise iron regulation, longer-term manipulation of CHO can yield
unavoidable or larger alterations to iron metabolism, which, over time, could eventually deplete
iron stores with negative effects to an athlete’s health, wellbeing and performance. To explore this
chronic effect, Badenhorst et al. [62] had trained endurance runners complete two structured 7 day
training blocks while consuming diets of either low (3 g·kg−1 BM) or high (8 g·kg−1 BM) CHO content.
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On days 1 and 7 of each training week, athletes performed a 45 min treadmill run at 65% VO2max to
measure the IL-6 and hepcidin response to exercise. Contrary to expectations, there were no clear
differences in post-exercise IL-6 or hepcidin concentrations between Days 1 and 7, or between dietary
conditions. However, interrogation of the study protocol notes that it scheduled five days of key
training sessions, followed by a rest day on Day 6, then the post-intervention test on Day 7. As such,
it is possible that the day of rest, combined with a higher (22%) protein intake in the isocaloric low
CHO condition, could have allowed both diets to achieve sufficient restoration of muscle glycogen on
Day 7. Consequently, any differences in inflammatory and iron regulatory markers to the observed
exercise session were likely negated.

The ketogenic low CHO high fat (LCHF) diet represents another model of chronic CHO restriction
of current interest. Ketogenic diets are characterized by CHO intakes of <50 g·day−1 and low to
moderate protein intake (~15% energy intake), with the remaining daily energy consumed in the form
of dietary fat [63]. Adherence to a LCHF diet increases blood ketone concentrations, while re-tooling
the muscle to substantially increase fat oxidation, including an increase in the exercise intensity at
which maximal rates of fat oxidation occur [17,63]. Studies of medium term (e.g., 4 weeks) adherence
to such diets show reduced resting muscle glycogen content and reduced utilization of glycogen
during exercise [64]. It is of interest to note that even with extreme restriction of dietary CHO intake,
gluconeogenesis and the storage of muscle glycogen is enabled from precursors such as lactate, glycerol
and some amino acids [17,64]. Of note, the time course of adaptation to a LCHF diet remains a
contentious issue, largely due to the absence of a clear definition of the processes and outcomes of
keto-adaptions. Although it has been argued that 2–3 months, or even longer, may be needed for
complete keto-adaptation to occur [17], substantial alterations in substrate utilization and ketone
concentrations have been demonstrated in as little as 5 days adherence to a ketogenic LCHF diet [15,65].
Controversially, and of importance to the current review, it has been proposed that long-term
adherence to a ketogenic diet enhances glycogenesis, restoring or “normalizing” muscle glycogen
content to levels similar to that of athletes adhering to high CHO diets [66]. However, this theory
is only supported by evidence from a single cross-sectional study, where endurance athletes who
reported (and had confirmed) long-term adherence to a ketogenic LCHF diet (>6 months; <50 g·day−1

CHO), were compared to a similar cohort who consumed diets with higher CHO availability [66].
Meanwhile, studies with similar methodology [67] and other lines of interrogation contradict this
theory, justifying that further scrutiny is warranted [17]. Nevertheless, with the majority of studies
supporting the notion that ketogenic LCHF diets are associated with chronically reduced muscle
glycogen content, it is possible that such nutritional approaches can result in a cumulative increase in
hepcidin levels (both at baseline and post-exercise), with negative implications to iron status. Of course,
there may also exist other iron-related issues from such diets, on the basis of the food choice changes,
which would impact the quantity and sources of dietary iron intake.

To explore such issues, our group recently examined the effect of 3 weeks adherence to a LCHF diet
(<50 g·day−1 CHO, ~80% fat) during a period of intensified training on iron metabolism in elite race
walkers [68]. The dietary iron content of the LCHF diet was ~25% lower than that of the CHO-rich diet
(13.7 vs. 17.8 mg·day−1; p = 0.005) due to the exclusion of fortified grains and cereals, which provide
a substantial source of non-heme iron in the Western diet. Despite a lower dietary iron intake,
the LCHF group exhibited a smaller decrement in serum ferritin levels (23% decrease) than athletes
adhering to CHO-rich diets (37% decrease; p = 0.021) [68]. While this outcome seems contradictory,
we propose that the greater decrease in serum ferritin may reflect a larger, more adaptive hematological
response to training in the group exposed to consistently or strategically high CHO availability. Here,
iron may have been used for adaptive processes such as increases in the production of hemoglobin or
iron-associated enzyme activity, outcomes that benefits aerobic performance. Indeed, these athletes
experienced a mean 4.8–6.0% improvement in 10 km race walk performance, as compared to the
1.6–2.3% decrement evident in athletes adhering to a LCHF diet [13,14]. However, there are multiple
factors that can influence performance, and unfortunately, hematological adaptation (i.e., hemoglobin
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mass) was not quantified to confirm this hypothesis. Another investigation of moderately trained
individuals (defined as endurance training >7 h per week), assessed the impact of a 12-week LCHF
dietary intervention on hematological parameters [69]. In a free-living situation where participants
self-selected all their foods, athletes adhering to the LCHF diet consumed significantly less dietary
iron than athletes adhering to a high CHO diet (12.0 vs. 18.2 mg·day−1). However, in this instance no
changes in serum ferritin were evident after 12 weeks in either the high CHO or LCHF dietary groups.
Differences between our work and that of McSwinney and colleagues [69] may be attributed to the
caliber of athlete and level of the training stimulus. It is likely that the elite athlete cohort from our work
completed a more demanding training schedule than the moderately-trained participants engaged by
McSwinney et al. [69], which in combination with the highly hemolytic nature of race walking, may
have elicited larger exercise-associated iron losses [35], and therefore, reductions in iron stores.

We also studied the impact of a LCHF diet on the iron regulatory response to exercise [68]. Here,
a greater IL-6 and hepcidin response occurred following a 25 km exercise protocol in athletes who
had adapted to a LCHF diet, compared to athletes that remained on a high CHO diet. This result
presents the possibility that iron absorption may have been impaired in keto-adapted athletes in
the hours following exercise. Importantly, however, the differences in serum ferritin levels need to
be considered, as they have a strong homeostatic influence on the magnitude of the post-exercise
hepcidin increase [47,70]. Accordingly, the higher serum ferritin levels evident in the LCHF group
post-intervention, may have contributed to the greater hepcidin outcomes reported at 3 h post-exercise.
This question prompted examination of the iron regulatory response in a subset of athletes, matched for
serum ferritin levels, to remove any influence of baseline iron status [71]. This follow-up study revealed
no differences in post-exercise hepcidin concentrations between keto-adapted athletes (<50 g·day−1

CHO) and those adhering to CHO-rich diets (~8·g·kg−1 BM·day−1 CHO). Therefore, it collectively
appears that iron status may have been a confounding factor in our initial study [68], and that an
athlete’s initial iron status may exert a more dominant influence over hepcidin expression than dietary
manipulation. In conclusion, while acute studies manipulating muscle glycogen content can alter
hepcidin activity, evidence of altered iron regulation resulting from chronic CHO restriction is yet to
be clearly demonstrated. It is possible that prolonged adherence to a low CHO diet may result in an
adaptive state, whereby these acute alterations subside as the dietary adherence is maintained over
time. However, this assertion is speculative, and future research is required to confirm this prospect.

Finally, given the potential for negative implications to iron metabolism when training with
low CHO availability, it was speculated that sustained high CHO availability may exert a positive
influence on iron metabolism. A recent investigation had elite race walkers adhere to a novel
dietary strategy aimed at optimizing endogenous and exogenous CHO availability for 2 weeks [72].
This dietary approach strategically incorporated a number strategies to promote high CHO availability,
which included high CHO intake (10–12 g·kg−1 BM), gut training strategies [73], low residue foods,
and sucralose ingestion. The combination of such strategies was intended to increase CHO availability
and oxidation during prolonged high intensity exercise, in an attempt to improve exercise economy
and gut tolerance [74], whilst positively influencing athletic performance. However, these outcomes
may also improve the ability to better sustain blood glucose concentrations and muscle glycogen
stores, which could attenuate the IL-6 response to exercise and minimize post-exercise hepcidin levels.
Regardless, no differences in serum ferritin, inflammation or hepcidin concentrations were evident in
athletes adhering to the novel, very high CHO dietary approach, compared to athletes consuming a
more moderate CHO intake (6–8 g·kg−1 BM). Therefore, it appears that there is no additional benefit
to iron regulation from increasing CHO intake to very high levels, leaving us to conclude that a
moderate CHO intake appears sufficient to mediate the various factors we know have an impact on
iron regulation.
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5. Energy Availability and Iron Regulation

While CHO has received significant attention as a potential moderator of iron metabolism, a more
recent focal point has been the impact of inadequate energy availability. LEA in athletes, which can arise
from restrictions in energy intake, excessive energy expenditure, or a combination of both, is thought
to impair key physiological processes that underpin health and performance [6]. Interestingly, it has
been suggested that low iron stores may contribute to LEA or its clinical manifestations, yet it is
also acknowledged that LEA may itself contribute to low iron status in athletes [75]. With no innate
mechanism available for the body to synthesize iron, humans are solely reliant on dietary iron sources
to replace incidental daily [76] and exercise-induced [35] iron losses, including the replacement of
iron used for adaptive purposes. Absolute restriction of energy intake, which is commonly involved
in scenarios of LEA in weight restricted or weight sensitive sports [77], may contribute to reduced
intake of micronutrients, exacerbated by disordered eating or other restrictions of dietary range.
Furthermore, scenarios of LEA can also be accompanied by very high energy expenditures resulting
from excessive training loads, which potentially increase exercise-induced iron losses via mechanisms
such as hemolysis, sweating, gastrointestinal bleeding, inflammation and hepcidin elevations [35].
This mismatch between iron losses and iron intake may partially explain the high rate of iron deficiency
commonly observed in athletes with LEA [18].

The action of the iron regulatory hormone hepcidin may also be influenced by LEA. Increases in
resting hepcidin concentrations have been reported in physically active military personnel completing
a 4 day military training exercise, that elicited a 55% energy deficit and 2.7 kg decrease in body mass
(EI = ~2200 kcal·day−1; EE = ~6100 kcal·day−1) [78]. Here, the increase in resting hepcidin levels
seen was positively associated with energy expenditure (r = 0.40), and negatively correlated with
energy balance (r = −0.43). However, the macronutrient content of the diet had no influence on
either IL-6 or hepcidin levels. Collectively these data indicate a link between hepcidin expression and
energy provision, occurring independently of an inflammatory stimulus, highlighting the importance
of maintaining energy availability to avoid unnecessary elevations in hepcidin concentrations.
Similar findings were reported in a crossover study of highly trained endurance athletes, where resting
hepcidin concentrations were increased by a 3 day exposure to LEA (18 kcal·kg·FFM−1) compared to a
diet of sustained adequate energy availability diet (52 kcal·kg·FFM−1) [79]. In this same study, 75 min of
treadmill running at 70% VO2max yielded a significantly larger post-exercise IL-6 response in the LEA
trial, compared to the adequate EA condition. Here, a steady decline (−28%) in muscle glycogen content
was evident over the 3-day LEA period, which is likely responsible for the augmented inflammatory
response reported. However, despite differences in IL-6 between dietary conditions, no significant
differences in hepcidin levels at 3 h post-exercise were reported. Taken together, the differences
in resting hepcidin concentrations between dietary conditions (without changes to inflammation),
in addition to a similar post-exercise hepcidin increase (occurring despite differences in IL-6 levels),
provides further evidence that LEA may be influencing hepcidin activity via a non-inflammatory
mechanism that is independent of the STAT-3 pathway primarily responsible for CHO induced
alterations in hepcidin levels [40].

The precise mechanism underpinning the observed alterations to hepcidin concentrations
associated with LEA are still in question. One prospect is the regulation of hepcidin via gluconeogenic
signaling [80]. For instance, in response to metabolic disturbances induced by food deprivation,
a ~5-fold increase in transcription of the hepcidin gene (hepcidin antimicrobial peptide; HAMP) has
been reported. This upregulation was followed by a ~2-fold increase in hepcidin concentrations,
attributed to activation of cyclic adenosine monophosphate response binding protein (CREBH) [80].
This study demonstrated the ability for hepcidin to be a gluconeogenic sensor during times of starvation,
potentially making this pathway a candidate to explain the increased hepcidin expression in athletes
with LEA. Alternatively, the expression of another key regulator of iron metabolism, erythroferrone
(ERFE), can also be regulated by nutrient availability [81]. Increases in ERFE act as an inhibitor of
hepcidin expression, and therefore, ERFE reductions that occur in response to starvation result in an
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increase in hepcidin concentrations [81]. Irrespective of the current lack of knowledge surrounding the
precise mechanistic pathway relevant here, the increase in hepcidin levels that are evident in scenarios
of LEA has led to the proposition that hepcidin could be a useful biomarker for early identification of
LEA in athletes [82]. Although this is an intriguing prospect, it is noted that the majority of evidence
supporting this association has been largely drawn from animal studies, or models of starvation.
Therefore, it remains to be determined whether LEA in athletes creates metabolic perturbations of
sufficient magnitude to alter these signaling pathways. Accordingly, future research should identify
the exact mechanism(s) responsible for alterations in hepcidin expression caused by LEA before it can
be considered as a useful biomarker in the early identification of this issue in athletes.

Interestingly, it is also possible that hepcidin concentrations may be indirectly affected by LEA
as a secondary response to other hormonal perturbations. A study of exercising military personnel
had participants placed into a 55% energy deficit for 28 days, while receiving either a weekly 200 mg
testosterone injection, or an isovolumetric placebo [83]. Participants receiving placebo injections
reported no changes to serum ferritin or hepcidin levels over the 28-day energy deficit period, however,
a decline in hemoglobin concentrations and erythropoiesis was noted. In comparison, participants
that were supplemented with testosterone reported a 41% decline in hepcidin levels, which increased
iron availability to support a 34% increase in erythropoietin concentrations, allowing erythropoiesis
and hemoglobin concentrations to be sustained during the energy deficit. These outcomes indicate
that testosterone has suppressive effects on hepcidin expression, which is particularly important in
scenarios of LEA where hepcidin may otherwise be elevated. Moreover, the key female sex hormone,
estrogen, can have a similar suppressive effect on hepcidin concentrations [84,85]. Such findings become
interesting in the context of athletes, where low sex hormone concentrations are a common outcome of
sustained LEA and part of the clinical sequalae of RED-S [7,86]. Therefore, an increase in hepcidin
expression may indirectly occur in response to declining estrogen or testosterone concentrations,
which may subsequently implicate poor iron stores as a secondary outcome of LEA.

While we have primarily reviewed mechanisms by which LEA can augment hepcidin levels,
potentially leading to a state of iron deficiency, there is also evidence of a bi-directional relationship in
which low iron stores contribute to an energy deficit (Figure 1). For instance, the oxidative production
of adenosine triphosphate (ATP) through the electron transport chain requires non-heme iron sulphur
enzymes and heme-containing cytochromes [22]. In cases where iron stores are compromised, an athlete
may become metabolically inefficient, characterized by a shift from ATP production via oxidative
phosphorylation towards anaerobic metabolism. This effect increases the energy expenditure for
a given exercise task, potentially reducing energy availability [6]. Additionally, low iron stores
may exacerbate some of the other negative health outcomes associated with LEA (Figure 1) [75].
For example, associations between iron status and bone mineral density have been reported in
non-athletic populations [87], leading to the assertion that chronic iron deficiency can induce bone
resorption [88]. Impairments in bone turnover markers have been demonstrated in studies where
LEA has been induced [89,90], which over time, may lead to poor bone health. In athletes with both
depleted iron stores and LEA, the negative impact on markers of bone turnover may be amplified,
potentially accelerating the progression towards undesirable and irreversible conditions such as
osteopenia. Another key system possibly influenced by LEA is the immune system [6], with evidence
of an increased incidence of illness reported in athletes with LEA [91]. However, it has also been
proposed that LEA has minimal impact on immunity, and studies demonstrating this association may
instead be mediated by poor mental health (e.g., anxiety or perceived stress) [92], another proposed
consequence (and cause) of LEA in athletes [6]. Nevertheless, iron plays an important role in mounting
an effective immune response to invading pathogens, and iron deficiency may contribute to decreased
immune resistance and increased susceptibility to infection [93]. It may be that when LEA and
depleted iron stores occur simultaneously in athletes, that immune resistance is further compromised,
potentially via the indirect effect of LEA on psychological health, which is known to impact immune
resistance [94]. Finally, iron deficiency can reduce thyroid functioning [95], and decrease the release of
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growth hormone and insulin-like growth factor [96]. These alterations (which also occur in scenarios
of LEA to preserve energy [6]) can have wide-reaching effects, including interfering with growth,
reproduction, bone health, and metabolism [75,97]. Accordingly, it may be that the identification of an
iron deficiency can serve as an early indicator of LEA, and therefore, dieticians working with athletes
wishing to correct an iron deficiency might also consider screening for LEA and clinical signs of RED-S.
Furthermore, correcting an iron deficiency may be an important first step in minimizing some of the
other negative health consequences that can result from LEA.
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Figure 1. Schematic representation of the interactions between low energy availability (LEA) and
iron status in athletes. Solid lines identify pathways where LEA is thought to affect iron status,
often mediated by hepcidin expression. Broken lines indicate how iron deficiency can exacerbate
other health consequences associated with LEA in relation to the Relative Energy Deficiency in Sport
syndrome (RED-S) [6].

6. Conclusions

It appears that nutrient availability can impact the iron regulatory response to exercise. With regard
to CHO availability, acute manipulation of muscle glycogen content, which causes the athlete to
“train low”, appears to increase hepcidin levels during the recovery from exercise. Therefore, athletes
who wish to integrate this specialized training strategy into a periodized training/nutrition program
should focus the nutrient manipulation on training sessions that are low in intensity and short in
duration to minimize any potential influence on hepcidin concentrations and iron regulation. To date,
chronic investigations of CHO restriction (i.e., ketogenic LCHF diets) have not shown clear evidence of
negative effects on either iron status or iron regulation. However, dietary iron content is typically lower
in LCHF menus as compared to that of CHO-rich diets, which should be considered when athletes are
adopting these approaches long term. As for the impact of energy availability, investigations in animal
models and of military personnel indicate a link between LEA and iron metabolism; however, studies
to date in athletes are limited. Accordingly, future research should be directed towards understanding
the effects of energy deficit (both acute and chronic) on hematological functions, and well as their
interaction with other health systems.
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